

Hardware Measurement Platforms for the Agilent 89600 Series Vector Signal Analysis Software

Data Sheet

89600S VXI-Based Vector Signal Analyzers

PSA Series High Performance Spectrum Analyzers

89600 Vector Signal Analysis Software

ESA-E Series General Purpose Spectrum Analyzers

E4406A Transmitter Tester

Contents

Compatible Measurement Platforms 3 Specifications 4
Specifications 4
Specifications
Performance (Option 200)
89610S, 89611S, 89640S, 89641S vector signal
analyzer performance 4
89650S vector signal analyzer performance 8
PSA spectrum analyzer performance 9
ESA-E Series spectrum analyzer performance 10
E4406A transmitter tester performance 11
Time and waveform capture (Option 200) 12
Analog modulation analysis (part of Option 200) 14
89610S, 89611S, 89640S, 89641S vector
signal analyzers 14
89650S vector signal analyzer 15
PSA spectrum analyzers 15
ESA-E Series spectrum analyzers 16
E4406A transmitter tester 16
Vector modulation analysis (Option AYA)
89610S, 89611S, 89640S, 89641S, 89560S
vector signal analyzers 17
PSA spectrum analyzers, ESA spectrum
analyzers, E4406A transmitter tester 18
3G modulation analysis (Option B7N)
89610S, 89611S, 89640S, 89641S, 89650S
vector signal analyzers 19
PSA spectrum analyzers, ESA spectrum
analyzers, E4406A transmitter tester 21
WLAN modulation analysis (Option B7R)
89610S, 89611S, 89640S, 89641S, 89650S
vector signal analyzers 24
802.16-2004 OFDM modulation analysis
(Option B7S)
89610S, 89611S, 89640S, 89641S, 89650S
vector signal analyzers 25
PSA and ESA spectrum analyzers 25
General 26
89610S, 89611S, 89640S, 89641S 26
Appendix A: User-supplied PC requirements 27
Appendix B: Software and Hardware
Feature Availability and Requirements 27
89600 Series VSA software requirements 27
89600S VXI platforms 27
89650S platform 28
PSA platforms 28
ESA platforms 29
E4406A platform 30
Glossary 31

Introduction

The 89600 Series vector signal analysis software runs on
a PC and works with a variety of hardware measurement
platforms. These platforms include the 89600 VXI-based
vector signal analysis systems, the 89650S 26.5 GHz
vector signal analyzer, the PSA high performance
spectrum analyzers, the ESA general purpose spectrum
analyzers, and the E4406A transmitter tester. These
platforms down convert and digitize the signal, provide
signal capture capability, and move the data to the
PC in a sequential stream of data blocks. The 89600 VSA
software processes the data in the time, frequency and
modulation domains.

This data sheet will help you select the hardware platform that will best meet your vector signal measurement and analysis needs.

Compatible Measurement Platforms

The 89600 VSA software runs on most Windows-based PCs and connects to the measurement platforms via GPIB, FireWire (IEEE-1394), or LAN. This data sheet documents the performance of the 89600 VSA software configured with Option 300 hardware connectivity, plus listed options, and the VXI, ESA, PSA, 89650S, and E4406A platforms.

VXI-based vector signal analysis systems

Agilent's 89610S, 89611S, 89640S and 89641S vector signal analyzers are VXI-based systems. These versatile systems consist of several VXI modules integrated at the factory. They offer a minimum of 36 MHz of analysis bandwidth and up to 6 GHz tuning range in 4-slot, 6-slot, and 13-slot VXI mainframes. The 89600 VSA software is a standard part of these systems.

Phase-coherent two channel baseband or RF operation is available as an option to the VXI systems.

ESA-E Series spectrum analyzers

The ESA-E Series general purpose, portable spectrum analyzers offer a wide range of performance, features, and flexibility with up to 26.5 GHz tuning range and 10 MHz of analysis bandwidth. Measurement control is via GPIB.

PSA Series high-performance spectrum analyzers

The Agilent PSA Series offers high performance spectrum analysis up to 50 GHz with powerful one-button measurements, a versatile feature set, and a leading-edge combination of flexibility, speed, accuracy, and dynamic range. Measurement control is via LAN or GPIB.

89650S vector signal analyzer

The 89650S, 26.5 GHz VSA, is Agilent's highest performance VSA. It pairs the E4440A, 26.5 GHz PSA spectrum analyzer and its 80 MHz analysis bandwidth option, with the 89600 VSA software.

E4406A VSA transmitter tester

Connect Agilent's E4406A VSA transmitter tester with the 89600 VSA software and you have two high performance instruments: a superior multi-format standards-based transmitter tester and a high performance, flexible digital demodulation and analysis tool.

Other measurement platforms

The following high performance products also work with the 89600 VSA software but are not covered in this data sheet.

Infiniium scopes

Combine the 89600 VSA software with Agilent's Infiniium oscilloscopes (some models) to analyze super wide bandwidth signals. The oscilloscopes provide up to 13 GHz of analysis bandwidth and are well suited to digitizing down-converted satellite, LMDS, and MMDS signals. The digitized signals are transferred to the 89600 software, running in the scope or on an external PC, where the frequency, time, and modulation analysis tools of the 89600 can be used to evaluate and troubleshoot the signal. For more information refer to "Agilent Infiniium Oscilloscopes Performance Guide Using 89601A Vector Signal Analyzer Software" (5988-4096).

ADS

The powerful, PC-based 89600 VSA software enables tight, interactive integration with Agilent's Advanced Design System (ADS) RF and microwave design and simulation software to analyze simulation results. The 89600 software can be dynamically linked to any point in the digital model to analyze data by simply dragging the VSA icon to the desired spot in the schematic. The 89600 software can also be used to import real-world signals into ADS simulations using any supported acquisition hardware.

N4010A wireless connectivity test set

The N4010A is a test set designed to quickly and accurately measure emerging wireless connectivity formats in the 2.4 GHz band. The N4010A offers two bandwidth selections of 5 and 22 MHz, making the N4010A an ideal test platform for *Bluetooth* TM and WLAN RF measurements. The N4010A with *Bluetooth* Option 101 is an effective measurement tool for development, integration, pre-qualification, and volume manufacturing.

Signal generators

Any VSA system, with version 3.01 software or later, can control Agilent ESG and PSG Series signal generators. This control expands the usefulness of the VSA software for stimulus/ response measurements. The 89600 software controls the signal type, frequency, and level features of the signal generator. The software also downloads files to the signal generator arbitrary waveform source to simulate a wide range of digitally modulated signals. The files can be 89600 software signal captures, or even simulated waveforms from ADS design software.

Playback requires that the arbitrary waveform generator be installed in the signal generator. Signal playback bandwidth is limited by the bandwidth of the arbitrary waveform generator.

The signal generator can be controlled via GPIB or LAN.

Specifications

Performance 89610S, 89611S, 89640S, 89641S vector signal analyzer performance

The following specifications describe the warranted performance of standard 89610S, 89611S, 89640S, and 89641S VXI-based vector signal analyzer (VSA) systems integrated by Agilent Technologies.

The performance of 89610S systems is specified in the $E8408A^1$ four-slot, the $E1421B^2$ six-slot, and the $E8403A^2$ 13-slot VXI mainframes. The performance of the 89611S, 89640S, and 89641S systems is specified in the $E8408A^1$ four-slot, the $E1421B^2$ six-slot, and the $E8403A^2$ 13-slot VXI mainframes. These specifications also describe the nominal performance for other, non-standard 89600S configurations.

These specifications describe warranted performance over a temperature range of 20° to 30 °C and include a 30-minute warm-up from ambient conditions. Parameters identified as "typical" or "characteristic" are included for informational purposes only and are not warranted. To aid in understanding analyzer performance capabilities, measurement units and specification terms are provided in the glossary at the end of this document.

The Agilent 89600 Series VSA systems come standard with two sets of application software: vector signal analysis and spectrum analysis. The vector signal analysis application software is used to analyze complex signals in the time, frequency, and modulation domains. The spectrum analyzer application software emulates a traditional spectrum analyzer, providing fast, high-resolution signal magnitude measurements while sweeping across a user-defined frequency span. Unless otherwise indicated, the specifications in this data sheet apply to both sets of application software.

^{1.} With backplane connector RF shielding (Option E8408-80900) and enhanced current supply (Option E8408-100).

^{2.} With backplane connector RF shielding (Option E1401-80918)

89610S, 89611S, 89640S, 89641S vector signal analyzer performance (continued)

Frequency	89610S (DC to 40 MHz)	89611S (70 MHz ±18 MHz)	89640S (DC to 2700 MHz)	89641S (DC to 6000 MHz)	
Frequency range	,		,	,	
Spectrum analysis mode					
RF/IF mode	_	Not available	36 to 2700 MHz ¹	36 to 6000 MHz ¹	
Baseband mode	DC to 40 MHz	Not available	DC to 36 MHz ²	DC to 36 MHz ²	
Vector analysis mode					
RF/IF mode	_	52 to 88 MHz ³	36 to 2700 MHz ¹	36 to 6000 MHz ¹	
Baseband mode	DC to 40 MHz	DC to 36 MHz ²	DC to 36 MHz ²	DC to 36 MHz ²	
Frequency tuning resolution	1 mHz	1 mHz	1 mHz	1 mHz	
Frequency spans					
Spectrum analyzer application	< 1 kHz to 40 MHz	Not available	< 1 kHz to 2.7 GHz	< 1 kHz to 6 GHz	
Vector signal analyzer application					
1 channel mode	< 1 Hz to 39.06 MHz	< 1 Hz to 36 MHz	< 1 Hz to 36 MHz	< 1 Hz to 36 MHz	
2 channel mode	< 1 Hz to 39.06 MHz	< 1 Hz to 36 MHz	< 1 Hz to 36 MHz	< 1 Hz to 36 MHz	
Ch1 + j*Ch2 mode	< 2 Hz to 78 MHz	< 2 Hz to 72 MHz	< 2 Hz to 72 MHz	< 2 Hz to 72 MHz	
Frequency points per span					
Spectrum analyzer application	2 to 131,072	Not available	2 to 131,072	2 to 131,072	
Vector signal analyzer application					
Calibrated points	51 to 102,401	51 to 102,401	51 to 102,401	51 to 102,401	
Displayable points	51 to 131,072	51 to 131,072	51 to 131,072	51 to 131,072	
Frequency accuracy	Frequency accuracy is t	Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.			
Initial accuracy	100 ppb	100 ppb	100 ppb	100 ppb	
Aging	1 ppb/day	1 ppb/day	1 ppb/day	1 ppb/day	
	100 ppb/year	100 ppb/year	100 ppb/year	100 ppb/year	
Temperature drift (0° to 50 °C)	50 ppb	50 ppb	50 ppb	50 ppb	
Frequency stability					
Phase noise					
10 MHz signal (baseband input)					
100 Hz offset	<-108 dBc/Hz	<-108 dBc/Hz	<-108 dBc/Hz	<-108 dBc/Hz	
1 kHz offset	<-118 dBc/Hz	<-118 dBc/Hz	<-118 dBc/Hz	<-118 dBc/Hz	
> 10 kHz offset	<-120 dBc/Hz	<-120 dBc/Hz	<-120 dBc/Hz	<-120 dBc/Hz	
80 MHz signal (IF input)					
100 Hz offset	_	<-92 dBc/Hz	_	_	
1 kHz offset	_	<-102 dBc/Hz	_	_	
> 10 kHz offset	_	<-110 dBc/Hz	_	_	
1 GHz signal ⁴ (RF input)					
> 20 kHz offset	_	_	<-99 dBc/Hz	<-99 dBc/Hz	
> 100 kHz offset	_	_	<-110 dBc/Hz	<-110 dBc/Hz	

Resolution bandwidth filtering	89610S (DC to 40 MHz)	89611S (70 MHz ±18 MHz)	89640S (DC to 2700 MHz)	89641S (DC to 6000 MHz)	
RBW range	The range of available	RBW choices is a function points. Users may step throu	of the selected frequency	span and the number of	
	an arbitrarily chosen b	andwidth directly.			
Spectrum analyzer application	1 Hz to > 5 MHz	Not available	1 Hz to > 5 MHz	1 Hz to > 5 MHz	
Vector signal analyzer application	< 1 Hz to 10 MHz	< 1 Hz to 10 MHz	< 1 Hz to 10 MHz	< 1 Hz to 10 MHz	
RBW shape factor	The window choices below allow the user to optimize the RBW shape as needed for best amplitude				
	accuracy, best dynam	ic range, or best response to	transient signal character	istics.	
	Selectivity	Passband fla	atness	Rejection	
Flat top	0.41	0.01 dB		> 95 dBc	
Gaussian top	0.25	0.68 dB		> 125 dBc	
Hanning	0.11	1.5 dB		> 31 dBc	
Uniform	0.0014	4.0 dB		> 13 dBc	

^{1.} Under-range provided to 30 MHz. Specifications are typical for center frequencies below 36 MHz.

^{2.} Over-range provided to 37.11 MHz
3. The 89611S can be configured to display and accept frequency settings based on the user's RF analysis bandwidth.
4. < 0.05 Grms random vibration, 5 - 500 Hz.

89610S, 89611S, 89640S, 89641S vector signal analyzer performance (continued)

89610S (DC to 40 MHz)	89611S (70 MHz ±18 MHz)	89640S (DC to 2700 MHz)	89641S (DC to 6000 MHz)
-31 dBm to +20 dBm	-30 dBm to +20 dBm	-30 dBm to +20 dBm	-30 dBm to +20 dBm
in 3 dB steps	in 5 dB steps	in 5 dB steps	in 5 dB steps
<u> </u>	-45 dBm to +20 dBm	-45 dBm to +20 dBm	-45 dBm to +20 dBm
	in 5 dB steps	in 5 dB steps	in 5 dB steps
+24 dBm, ±5 VDC	+20 dBm, ±5 VDC	+20 dBm, ±5 VDC	+20 dBm, ±5 VDC
+10 dBfs	+9 dBfs	+9 dBfs	+9 dBfs
1_	+10 dBfs	+10 dBfs	+10 dBfs
1			
1	1	1	1
2 hasehand	2 IF/hasehand	2 RE/IE/hasehand	2 RF/IF/baseband
			50 ohms
			Type N
2140	1,700 14	1,0014	17,00 14
AC or DC	AC or DC	AC or DC	AC or DC
AC UI DU			AC OF DC
Poturn loop in manaurar		AC	AU
neturn ioss in measuren	пент ѕран		
1 22:1 /17 dD\	1 F:1 /14 dD)	1 E.1 /14 dD)	1.5:1 (14 dB)
1.33:1 (17 dB)	1.5:1 (14 dB)	1.5:1 (14 dB)	1.5:1 (14 0B)
	0.1.1 (0.15)	1.0.1 (10.7 ID)	0.0.1 (0.5.15)
+		<u> </u>	2.0:1 (9.5 dB)
-	1 /	, ,	3.1:1 (5.8 dB)
		elected and are the sum of a	bsolute full-scale
accuracy and amplitude	linearity.		
±0.8 dB	±0.8 dB	±0.8 dB	±0.8 dB
			±2 dB
<u> </u>	±0.8 dB	±2 dB (typical)	±2 dB (typical)
_	_	_	±2 dB
T —	_	_	±2.25 dB (typical)
±0.10 dB	±0.10 dB	±0.10 dB	±0.10 dB
±0.15 dB	±0.15 dB	±0.15 dB	±0.15 dB
±0.20 dB	±0.20 dB	±0.20 dB	±0.20 dB
T _	See footnote ¹	_	_
			1
<-40 dBfs	< -40 dBfs	<-40 dBfs	<-40 dBfs
<-40 dBfs	< -40 dBfs	< -40 dBfs	<-40 dBfs
	1		
Frequency response acro	oss the measurement span in	< -40 dBfs n vector signal analysis mode	
	oss the measurement span in		
Frequency response acr (included in amplitude s	oss the measurement span in pecifications)	n vector signal analysis mode	
Frequency response acro	oss the measurement span in pecifications) ±0.2 dB (typical)	n vector signal analysis mode ±0.2 dB (typical)	±0.2 dB (typical)
Frequency response acr (included in amplitude s	oss the measurement span in pecifications)	n vector signal analysis mode	
	-31 dBm to +20 dBm in 3 dB steps	CC to 40 MHz (70 MHz ±18 MHz) (70	(DC to 40 MHz) (70 MHz ±18 MHz) (DC to 2700 MHz) (DC to 20 dB

^{1.} External amplitude correction is available to correct for down-converter RF signal path amplitude. The user must provide a calibration trace file. Details are given in the 89611A online Help (under "89611, Setup" in the index).

^{2.} Requires a manual procedure; see Help text. Required for external tuners only.

89610S, 89611S, 89640S, 89641S vector signal analyzer performance (continued)

Amplitude (continued)	89610S	896118	89640S	89641S	
Channel match	(DC to 40 MHz)	(70 MHz ±18 MHz)	(DC to 2700 MHz)	(DC to 6000 MHz)	
Amplitude match	Multiple channels are available as options DC coupled, full-scale, matching input ranges				
Baseband	±0.25 dB	±0.25 dB	±0.25 dB	±0.25 dB	
IF/RF	IU.23 UD	±0.25 dB	±1.2 dB	±1.2 dB ¹	
Phase match	10 MHz input full occ		II.Z UD	±1.2 uD	
Phase match	+4°	ile, matching input ranges			
Crave dalay mastab	Across measurement		<u> </u>	—	
Group delay match			10	10	
Baseband	±2 ns	±2 ns	±2 ns	±2 ns	
IF/RF	_	±1.5 ns	±5.0 ns	±5.0 ns ¹	
Stability (typical)	_	0.000 4D /90	0.000 4D (00	0.000 4D /00	
Amplitude	_	0.006 dB/°C	0.006 dB/°C	0.006 dB/°C	
Phase		1.00.000	1.00 (0.0	4.00.700	
Baseband	_	1.0°/°C	1.0°/°C	1.0°/°C	
IF/RF	 -	1.0°/°C	2.0°/°C	2.0°/°C¹	
Dynamic range		tes the amplitude range that is			
Intermodulation distortion	Two input signals, eac	ch -6 to -10 dBfs, separation >	1 MHz, specified relative to e	either signal	
Third-order					
IF/baseband mode	<-70 dBc	< -70 dBc	<-70 dBc	<-70 dBc	
RF mode	_	<u> </u>	<-70 dBc	<-70 dBc	
Harmonic distortion	Single input signal, 0				
IF/baseband mode	<-70 dBc	< -68 dBc	< -68 dBc	< -68 dBc	
RF mode	_	< -70dBc	< –55 dBc (typical)	< -55 dBc (typical)	
Spurious responses	Full-scale input signal	within analyzer measurement :	span		
IF/baseband mode	<-68 dBc	<-68 dBc	<-68 dBc	<-68 dBc	
RF mode	_	_	< -65 dBc ² (typical)	< -65 dBc ³ (typical)	
	Full-scale input signal outside analyzer measurement span				
IF/baseband mode	<-70 dBc	< -68 dBc	< -68 dBc	<-68 dBc	
RF mode		_	< -52 dBc (typical)	< -50 dBc (typical)	
Spurious sidebands	Full-scale input signal				
Baseband mode (> 1 kHz offset)	<-70 dBc	< -70 dBc	<-70 dBc	<-70 dBc	
RF mode (1 to 3 kHz offset)	_	< -70 dBc	< -65 dBc	<-65 dBc	
RF mode (> 3 kHz offset)	_	< -70 dBc	< -70 dBc	<-70 dBc	
Residual responses (> 10 kHz)	Input port terminated	and shielded	-	1	
Baseband and IF/RF modes	-77 dBfs or -100 dBm		-77 dBfs or -100 dBm	-77 dBfs or -100 dBm	
(maximum of)					
Input noise density	Range ≥ -30 dBm				
Baseband mode (> 0.1 MHz)	<-121 dBfs/Hz	< -121 dBfs/Hz	< -121 dBfs/Hz	<-121 dBfs/Hz	
IF/RF mode (< 1.2 GHz)	_	< -118 dBfs/Hz	<-116 dBfs/Hz	<-116 dBfs/Hz	
RF mode (1.2 to 2.7 GHz)	 	_	<-114 dBfs/Hz	<-114 dBfs/Hz	
RF mode (> 2.7 GHz)	_	_	_	<-113 dBfs/Hz	
Sensitivity	Most sensitive range			110 2210,112	
Baseband mode	< –151 dBm/Hz	< –151 dBm/Hz	< -151 dBm/Hz	< -151 dBm/Hz	
IF/RF mode (< 1.2 GHz)	— TOT UDITI/ 112	< -159 dBm/Hz	< -158 dBm/Hz	< –157 dBm/Hz	
RF mode (1.2 to 2.4 GHz)	_	— 100 dBm/112	< –156 dBm/Hz	< –156 dBm/Hz	
RF mode (> 2.4 GHz)	+_	<u> </u>	<-156 dBm/Hz	< –153 dBm/Hz	
Phase	Measurements annly	to vector signal analyzer function		\ -100 \ \u0111/\ \tag{112}	
Linearity (typical)		delay deviation across maximus		flat-ton window	
Baseband mode	±2 ns	±2 ns	±2 ns	±2 ns	
IF/RF mode	±Z IIS	±2 ns ±6 ns	±8 ns (RF)	±2 ns ±8 ns (RF)	
IF/ NF IIIUUE		TO IIS	TO HS (NF)	±0 IIS (NF)	

^{1.} For signal frequencies < 2.7 GHz.

Typical specification degraded by 10 dB for input frequencies within ±10 MHz of 1890.6 MHz
 Typical specification degraded by 10 dB for input frequencies within ±10 MHz of 1890.6 MHz, 2909.4 MHz, 3200.0 MHz, 3709.4 MHz, 3733.3 MHz, 4509.4 MHz, and 5309.4 MHz.

^{4.} ± 17 MHz of center frequency (RF, IF), ≤ 35.5 MHz (baseband), ≤ 39.5 MHz (89610S)

89650S vector signal analyzer performance

These specifications summarize the performance of the 89650S over 20° to 30 °C. Refer to the E4440A and option 122, 80 MHz bandwidth ADC, technical data sheet or the 89650S technical overview for more detailed specifications.

89650S					
3 Hz to 26.5 GHz					
36 MHz to 26.5 GHz					
Pre-selector bypass option recor	nmended above 3 GHz				
< 1 kHz to 80 MHz ¹					
51 to 102,401					
51 to 131,072					
±0.25 dB					
At 50 MHz					
Deviation from flat response, into	ernal calibration, center	frequency > 50 MHz, flat-top window,			
10 dB input range, 0 dB IF gain		•			
Frequency	Span	Response			
≤ 3 GHz	≤ 30 MHz	±0.57 dB (±0.25 dB, typical)			
≤ 3 GHz	≤ 60 MHz	±0.75 dB (±0.45 dB, typical)			
≤ 3 GHz	≤ 80 MHz	±0.83 dB (±0.5 dB, typical)			
> 3 GHz	30 MHz	±0.18 dB, typical			
Pre-selector bypass enabled		The state of the s			
> 3 GHz	80 MHz	±0.6 dB, typical			
Pre-selector bypass enabled					
71					
Frequency > 3 GHz, span ≤ 60 M	Hz. pre-selector bypass	enabled			
	<u> </u>				
Frequency	Span	Linearity (typical)			
≤ 3 GHz	≤ 30 MHz	±1.6°			
≤ 3 GHz	≤ 60 MHz	±4.0°			
> 3 GHz	≤ 30 MHz	±1.0°			
Pre-selector bypass enabled					
7					
	MHz, pre-selector bypas	ss enabled			
	, ,				
1 ''	dBfs tones				
-106 dBc/Hz					
1.34 sec @ full span					
	3 Hz to 26.5 GHz 36 MHz to 26.5 GHz Pre-selector bypass option recor < 1 kHz to 80 MHz¹ 51 to 102,401 51 to 131,072 ±0.25 dB At 50 MHz Deviation from flat response, into 10 dB input range, 0 dB IF gain Frequency ≤ 3 GHz ≤ 3 GHz ≤ 3 GHz > 3 GHz Pre-selector bypass enabled After extended calibration perfor ±0.2 dB, nominal Frequency ≤ 3 GHz ≤ 3 GHz 2 dB, nominal Frequency ≤ 3 GHz S GHz	3 Hz to 26.5 GHz 36 MHz to 26.5 GHz Pre-selector bypass option recommended above 3 GHz < 1 kHz to 80 MHz¹ 51 to 102,401 51 to 131,072 ±0.25 dB At 50 MHz Deviation from flat response, internal calibration, center 10 dB input range, 0 dB IF gain Frequency ≤ 3 GHz ≥ 30 MHz > 3 GHz > 3 GHz 30 MHz Pre-selector bypass enabled > 3 GHz Pre-selector bypass enabled After extended calibration performed ±0.2 dB, nominal Frequency ≤ 3 GHz ≤ 30 MHz, pre-selector bypass After internal calibration performed ±0.2 dB, nominal Frequency ≤ 3 GHz ≤ 30 MHz > 3 GHz ≤ 30 MHz After extended calibration performed ±0.3 GHz ≤ 30 MHz > 3 GHz ≤ 30 MHz > 3 GHz ≤ 30 MHz Span ≤ 30 MHz > 3 GHz ≤ 30 MHz After extended calibration performed ±0.3°, nominal Frequency > 18 GHz, span ≤ 60 MHz, pre-selector bypass < -75 dBc, typical ≤ 3 GHz, span ≤ 60 MHz, two -9 dBfs tones -106 dBc/Hz 1 GHz, 10 kHz offset 128 MSa, complex			

^{1.} When operating above 3 GHz center frequency, a YIG-tuned filter (YTF) is normally used to prevent spurious responses due to out-of-span signals and mixer images. The bandwidth of the YTF pre-selector is a function of center frequency and its bandwidth will limit the wideband frequency span. The maximum useful frequency span is approximately 30 MHz at 3 GHz center frequency and increases to 60 MHz at 26.5 GHz. The pre-selector bypass, Option 123, adds a selectable bypass of the YTF pre-selector, enabling full 80 MHz functionality.

PSA spectrum analyzer performance

These specifications summarize the performance for the PSA spectrum analyzers (without Option 122, 80 MHz bandwidth ADC) when used with the 89600 vector signal analysis software. These are typical values, not warranted.

	PSA (typical)		
Frequency			
Range	10 MHz to 3 GHz		
	Specified range, 3 GHz to PSA maximum frequency is allowed but not specified		
Center frequency tuning resolution	1 mHz		
Frequency span	< 10 Hz to 8 MHz		
Frequency points per span			
Calibrated points	51 to 102,401		
Displayable points	51 to 131,072		
Resolution bandwidth (RBW)	The range of available RBW choices is a function of the selected frequency span and the number of calculated frequency points. Users may step through the available range in a 1-3-10 sequence or directly enter an arbitrarily chosen bandwidth.		
Range	1 Hz to 2.3 MHz		
RBW shape factor	the RBW shape as needed signal characteristics.	for best amplitude accuracy,	and E4406A) allow the user to optimize , best dynamic range, or best response to transient
	Selectivity	Passband flatness	Rejection
Flat top	0.41	0.01 dB	> 95 dBc
Gaussian top	0.25	0.68 dB	> 125 dBc
Hanning	0.11	1.5 dB	> 31 dBc
Uniform	0.0014	4.0 dB	> 13 dBc
Input	Full scale, combines attenuator setting and ADC gain ¹		
Range	-18 dBm to +22 dBm in 1 d 89601A v3.00 -30 dBm to +30 dBm in 2 d 89601A v4.00 -60 dBm to +30 dBm in 2 d	IB steps	
	< 3 GHz, with preamp Option 1DS, 89601A v4.00		
ADC overload	+9 dBfs At 1 GHz		
Amplitude accuracy			
Amplitude linearity	Range	Linearity	ADC dither
,	0 to -30 dBfs	±0.03 dB	On
	−30 to −50 dBfs	±0.1 dB	Off
IF Flatness	± 0.3 dB		
Sensitivity	At 1 GHz, most sensitive ra	nae	
onium,	-152 dBm/Hz Without pre-amp		
	-165 dBm/Hz		
	With pre-amp Option 1DS		
Dynamic range	With pre-amp option 103		
Third-order intermodulation distortion	Input range	Distortion	
minu-oraet intermodulation distortion	Range ≥ -30dBm		whichover is greater
	Range ≥ -30dBm < -70 dBc or < -90 dBfs, whichever is greater Range < -30dBm < -68 dBc or < -90 dBfs, whichever is greater		
Noise density	At 1 GHz	00 udc or < -30 dbts	o, willunever is greater
INDISE RELISITA		Donaity	
	Input range	Density	
	> -24 dBm	< -126 dBfs/Hz	
IF we side of we want	-44 dBm to -24 dBm	<-122 dBfs/Hz	
IF residual responses	< -70 dBfs		
IF spurious responses	<-70 dBfs		
IF flatness	± 0.3 dB		

^{1.} PSA ADC gain is set to 6 dB and attenuator is set to [89601A range (in dBm) + 18] dB.

ESA-E Series spectrum analyzer performance

These specifications summarize the performance for the ESA-E Series spectrum analyzers when used with the 89600 vector signal analysis software. These are typical values, not warranted.

	ESA ^{1,2} (typical)			
Frequency	, , , ,			
Range	Range of ESA-E model			
Center frequency tuning resolution	1 Hz			
Frequency span range	< 50 kHz to 10 MHz			
3.	Alias protection enabled			
	< 50 Hz to 10 MHz			
	Alias protection disabled, de	fault		
Frequency points per span				
Calibrated points	51 to 102,401			
Displayable points	51 to 131.072			
Frequency stability (spectral purity)	1 GHz input, > 10 kHz offset			
Phase noise	-96 dBc/Hz ²			
Resolution bandwidth (RBW)	The range of available RBW	choices is a function of the selec	ted frequency span and the number of	
,	-		able range in a 1-3-10 sequence or directly	
	enter an arbitrarily chosen be	, ,	asio rango in a r o ro coquentos en ancoca,	
Range	< 500 Hz to > 2.8 MHz			
90	Alias protection enabled			
	< 1 Hz to > 2.8 MHz			
	Alias protection disabled, de	fault		
RBW shape factor			W shape as needed for best amplitude	
TIDVV Shape factor		e, or best response to transient s		
	Selectivity	Passband flatness	Rejection	
Flat top	0.41	0.01 dB	> 95 dBc	
Gaussian top	0.25	0.68 dB	> 125 dBc	
Hanning	0.23	1.5 dB	> 31 dBc	
Uniform	0.0014	4.0 dB	> 13 dBc	
Input range	-55 dBm to +30 dBm, 1 dB s		> 13 dBC	
input range	Without pre-amp, < 3 GHz			
	-75 dBm to +30 dBm, 1 dB s	tone		
	With pre-amp Option 1DS	oteps		
ADC overload	+5.2 dBfs			
Amplitude accuracy		dow, apply between 30 MHz and	2 CU-	
Absolute full-scale accuracy	±1.5 dB	dow, apply between 30 Will and	3 0112	
IF Flatness	±0.2 dB			
ir riauless				
Camaiki dika	At 1 GHz, most sensitive ran	the measurement span included in	n ampilitude accuracy value	
Sensitivity With proomp	< =158 dBm/Hz	ge		
With preamp	< -136 dBm/Hz			
Without preamp		20 Mile 1 2 Cile: in dit		
Dynamic range			amplitude range that is free of erroneous	
Third and a link and a deletion disk arises	signals within the measuren –55 dBc	ient span		
Third-order intermodulation distortion		TE IDE (10 IDE ()	100111 () 1	
Maine deserte.		o.5 dBfs to -10 dBfs: separation >	100 kHz; referenced to either signal	
Noise density	< -120 dBfs/Hz ³			
IE 11 I	> –20 dBm range, at 1 GHz			
IF residual responses	-90 dBm			
	Alias protection = on			
	< -60 dBfs or < -90 dBm,			
	Alias protection = off			
IF spurious responses	<-45 dBc			
	Applies to signals that are be	and-limited in the analysis span		

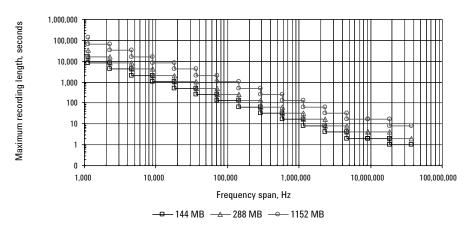
^{1.} All RF-related values are using the ESA-E Series RF input and a maximum mixer level of $-10~\mathrm{dBm}$.

^{2.} These features apply using the internal reference or 10 MHz REF IN only. Using EXT REF IN and 10 MHz OUT ports degrades close-in (< 600 Hz) phase noise performance.

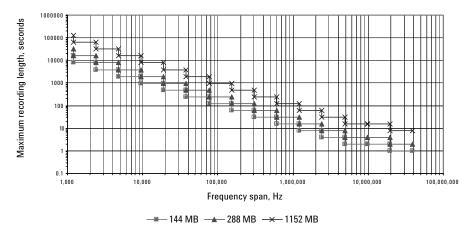
^{3.} Noise and sensitivity are degraded by approximately 3 dB $\times \log_2$ (10 MHz/span) when the alias protection parameter is set to false.

E4406A transmitter tester performance

These specifications summarize the performance for the E4406A transmitter tester when used with the 89600 vector signal analysis software. These are typical values, not warranted.


	E4406A ¹ (typical)			
Frequency	RF	Baseband	<u> </u>	
Range	7 MHz to 314 MHz,	DC to 5 MHz		
	329 MHz to 4 GHz			
Center frequency tuning resolution	1 Hz	1 mHz		
Frequency span range				
1 channel mode	< 10 Hz to 8 MHz	< 15 Hz to 5 MHz	!	
		(1 channel active)	
2 channel mode	NA	< 10 Hz to 5 MHz	!	
		(2 channel active)	
Ch1 + jCh2 mode	NA	DC to 10 MHz		
Frequency points per span				
Calibrated points	51 to 102,401			
Displayable points	51 to 131,072			
Resolution bandwidth (RBW)	The range of available RBW	choices is a function of	the selected freque	ency span and the number
	of calculated frequency poin	ts. Users may step throu	igh the available rai	nge in a 1-3-10 sequence or
	directly enter an arbitrarily c	hosen bandwidth.		
Range	RF		Baseband	
	< 1 Hz to 2.3 MHz		< 1 Hz to 2.876 I	ИНz
RBW shape factor	The window choices below a	allow the user to optimiz	ze the RBW shape a	as needed for best amplitude
	accuracy, best dynamic range, or best response to transient signal characte			acteristics.
	Selectivity	Passband flatnes	s	Rejection
Flat top	0.41	0.01 dB		> 95 dBc
Gaussian top	0.25	0.68 dB		> 125 dBc
Hanning	0.11	1.5 dB		> 31 dBc
Uniform	0.0014	4.0 dB		> 13 dBc
Input range	Full scale; combines attenua	tor setting and ADC gai	n ²	
RF	-18 dBm to +22 dBm in 1 dE	3 steps		
Baseband	-5 dBm to +13 dBm in 6 dB	steps		
Amplitude accuracy		•		
IF Flatness	± 0.2 dB			
	RF			
Dynamic range				
Third-order intermodulation distortion	RF Baseband			
	< -70 dBc or < -90 dBfs, whichever is greater < -60 dBc			
Noise density	Range	Density		
RF	All	<-124 dBfs/Hz		
Baseband	+13 dBm	-143 dBfs/Hz		
	+7 dBm	-142 dBfs/Hz		
	+1 dBm	1 1 2 2 2 3 1 2		
	_5 dBm	−5 dBm −135 dBfs/Hz		

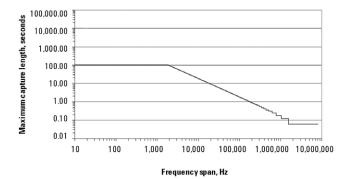
^{1.} All RF-related values are using the E4406A with digital IF part number E4440-60025. Refer to the E4406A data sheet for more information.


2. For RF input, E4406A ADC gain is set to +18 dB and attenuator is set to [89601A range (in dBm) + 18] dB.

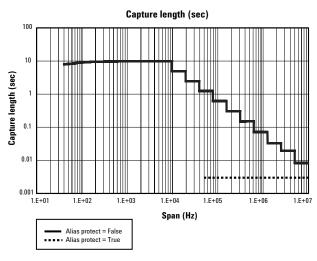
Time and waveform capture

	89610S/11S/40S/41S 89600S-144	89610S/11S/40S/41S 89600S-288	89610S/11S/40S/41S 89600S-120
Max capture size			
Bytes	144 MB	288 MB	1152 MB
Complex samples			·
Span ≤ 18.55 MHz	24 MSa	48 MSa	192 MSa
Span > 18.55 MHz	48 MSa	96 MSa	384 MSa
Max capture span	36 MHz	36 MHz	36 MHz
Max capture time	At maximum capture span	·	•
Span ≤ 18.55 MHz	0.5 s	1.01 s	4.04 s
Span > 18.55 MHz	1.01 s	2.02 s	8.08 s

89611S/89640S/89641S capture length



89610S capture length


Time and waveform capture (continued)

	89650S
Max capture size	
Bytes	512 MB
Complex samples	128 MSa
Max capture span	80 MHz
Max capture time	1.34 sec (At maximum capture span)

	PSA	ESA	E4406A
Max capture size	Complex samples		Complex samples
	During time capture on spans		During time capture on spans < 1.55 MHz
	< 1.55 MHz, the analyzer is set to		(< 755 kHz for baseband operation), the
	the cardinal span that equals or		analyzer is set to the cardinal span that
	exceeds the currently displayed span.		equals or exceeds the currently displayed span.
	For spans ≥ 1.55 MHz, the analyzer		For spans ≥ 1.55 MHz the analyzer
	is set to 8 MHz.		is set to 8 MHz.
	900 kSa	124,388 Sa	RF
			900 kSa
			Baseband
			900 kSa
			(Real samples, per channel)
Max capture span	8 MHz	10 MHz	RF
			8 MHz
			Baseband
			5 MHz

PSA and E4406A capture length

ESA capture length

Analog modulation analysis (part of Option 200)

89610S, 89611S, 89640S, 89641S vector signal analyzers

206100	/110	/// 2/// /// //	(typical)

	89610S/11S/40S/41S (typical)			
AM demodulation					
Demodulator bandwidth	Same as selected measure	ment span			
Modulation index accuracy	±1%				
	Modulation ≤ 1 MHz				
Harmonic distortion	Modulation index ≤ 95%				
	Modulation bandwidth	Distortion			
	≤ 100 kHz	-60 dBc			
	> 100 kHz and ≤ 1 MHz	_55 dBc			
Spurious	Relative to 100% modulatio	n index			
	Modulation bandwidth	Distortion			
	≤ 100 kHz	-60 dBc			
	> 100 kHz and ≤ 1 MHz	-55 dBc			
Cross demodulation	< 0.3% AM	1			
	on an FM signal with 50 kH	z modulation rate, 200 kHz de	eviation, cardinal spans		
PM demodulation			•		
Demodulator bandwidth	Same as selected measurer	ment span			
Modulation index accuracy	±0.5°	·			
•	Deviation < 180°, modulation rate ≤ 500 kHz				
Harmonic distortion	Deviation ≤ 180°				
	Modulation bandwidth Distortion				
	≤ 50 kHz −60 dBc				
	≥ 50 kHz and ≤ 500 kHz				
Spurious	Relative to 180° deviation				
•	Modulation bandwidth	Distortion			
	≤ 50 kHz	-60 dBc			
	≥ 500 Hz and ≤ 500 kHz	_55 dBc			
Cross demodulation	< 1° PM				
	on an 80% modulation index AM signal, modulation rate ≤ 1 MHz				
FM demodulation		5 -			
Demodulator bandwidth	Same as selected measurer	ment span			
Modulation index accuracy	±0.1% of span	'			
•	Deviation ≤ 2 MHz, modulation rate ≤ 500 kHz				
Harmonic distortion	Cardinal spans				
	Modulation rate	Deviation	Distortion		
	≤ 50 kHz	≤ 200 kHz	-60 dBc		
	≤ 500 kHz	≤ 2 MHz	-55 dBc		
Spurious	Cardinal spans				
<u> </u>	Modulation rate	Deviation	Distortion		
	≤ 50 kHz	≤ 200 kHz	_50 dBc		
	≤ 500 kHz	≤ 2 MHz	-45 dBc		
Cross demodulation	< 0.5% of span of FM	1	1		

Analog modulation analysis (part of Option 200) (continued)

89650S vector signal analyzer

	89650S (typical)				
AM demodulation	Modulation rate ≤ 1 MHz, modulation index < 95%				
Demodulator bandwidth	Same as selected meas	surement span			
Modulation index accuracy	±1%				
Dynamic range	-60 dBc				
	100% modulation index	(
Cross demodulation	< 0.3% AM				
	on an FM signal with 1	0 kHz modulation rate,	, 200 kHz deviation, cardinal spans		
PM demodulation	Modulation rate ≤ 1 MI	Hz, deviation ≤ 180°			
Demodulator bandwidth	Same as selected meas	surement span			
Modulation index accuracy	±3°				
Dynamic range	-60 dBc				
Cross demodulation	< 1º PM				
	on an 80% modulation index AM signal, modulation rate ≤ 1 MHz				
FM demodulation	Modulation rate ≤ 250	kHz, deviation ≤ 1 MH	Z		
Demodulator bandwidth	Same as selected meas	Same as selected measurement span			
Modulation index accuracy	±1% of span	±1% of span			
Dynamic range	-60 dBc				
Spurious	Modulation rate	Deviation	Distortion		
	≤ 500 kHz	≤ 2 MHz	–55 dBc		
Cross demodulation	< 0.5% of FM				
	on an 80% modulation index AM signal, modulation rate ≤ 1 MHz				

PSA spectrum analyzers

	PSA (typical)
AM demodulation	
Demodulator bandwidth	Same as selected measurement span
Modulation index accuracy	±1%
Dynamic range	60 dB
	100% for a pure AM signal
Cross demodulation	< 0.3% AM
	on an FM signal with 10 kHz modulation, 200 kHz deviation
PM demodulation	
Demodulator bandwidth	Same as selected measurement span
Modulation index accuracy	±3°
Dynamic range	60 dB (rad)
	for a pure PM signal
Cross demodulation	< 1% PM
	on an 80% AM signal
FM demodulation	
Demodulator bandwidth	Same as selected measurement span
Modulation index accuracy	±1% of span
Dynamic range	60 dB (Hz)
	for a pure FM signal
Cross demodulation	< 0.5% of span FM
	on an 80% AM signal

Analog modulation analysis (part of Option 200) (continued)

ESA-E Series spectrum analyzers

	ESA (typical)
AM demodulation	
Modulation index accuracy	±1%
Dynamic range	55 dB
	100% for a pure AM signal (distortion)
	45 dB
	100% for a pure AM signal (spurious)
Cross demodulation	< 0.5% AM
	on an FM signal with 10 kHz modulation, 200 kHz deviation
PM demodulation	
Modulation index accuracy	±3°
Dynamic range	55 dB (rad)
	for a pure PM signal
Cross demodulation	< 1% PM
	on an 80% AM signal
FM demodulation	
Modulation index accuracy	±1% of span
Dynamic range	50 dB (Hz)
	for a pure FM signal (distortion)
	45 dB (Hz)
	for a pure FM signal (spurious)
Cross demodulation	< 0.5% of span FM
	on an 80% AM signal

E4406A transmitter tester

	E4406A (typical)	
AM demodulation		
Demodulator bandwidth	Same as selected measurement span	
Modulation index accuracy	±1%	
Dynamic range	60 dB	
	100% for a pure AM signal	
Cross demodulation	< 0.3% AM	
	on an FM signal with 10 kHz modulation, 200 kHz deviation	
PM demodulation		
Demodulator bandwidth	Same as selected measurement span	
Modulation index accuracy	±3°	
Dynamic range	60 dB (rad)	
	for a pure PM signal	
Cross demodulation	< 1% PM	
	on an 80% AM signal	
FM demodulation		
Demodulator bandwidth	Same as selected measurement span	
Modulation index accuracy	±1% of span	
Dynamic range	60 dB (Hz)	
	for a pure FM signal	
Cross demodulation	< 0.5% of span FM	
	on an 80% AM signal	

Vector modulation analysis (Option AYA)

89610S, 89611S, 89640S, 89641S, 89650S vector signal analyzers

	89610S/11S/40S/41S (typical)		89650S (typical)		
Accuracy		SK, 8/16VSB, and OQPSK.	Formats other than	n FSK, 8/16VSB, and OQPSK.	
	Full-scale signal, full	y contained in the	Full-scale signal, fully contained in the		
	measurement span,	baseband, IF ¹ , or RF inputs,	measurement spa	n, random data sequence,	
	random data sequen	ce, range ≥ –25 dBm,	range ≥ -20 dBm,	start frequency ≥ 15% of span,	
	start frequency ≥ 159	% of span, alpha/BT ≥ 0.3	alpha/BT > 0.3 (0.	3 to 0.7 for OQPSK), and	
		(), and symbol rate ≥ 1 kHz.		dz. For symbol rates < 1 kHz, accuracy	
	1 '	kHz, accuracy may be limited		·	
	by phase noise. Aver	· · ·	, , , , , , , , , , , , , , , , , , , ,	,	
Residual errors	Results = 150 symbo		Results = 150 sym	bols	
Residual EVM	,		Results = 150 symbols Maximum Span EVM 0.5% rms 1 MHz 0.5% rms 1 0 MHz 1.0% rms 28 MHz 1.2% rms 36 MHz 2.5% rms Maximum Span EVM 100 kHz 0.3% rms 1 MHz 0.5% rms Maximum Span EVM 1.0% rms 1 0 0 kHz 0.3% rms 1 0 0 kHz 0.3% rms 1 0 0 kHz 1.0% rms 1.5% rms 1.0% rms 1.		
	Span	EVM		EVM	
	≤ 100 kHz	< 0.5% rms	· '		
	≤ 1 MHz	< 0.5% rms			
	≤ 10 MHz	< 1.0% rms			
	> 10 MHz	< 2.0% rms	· ·		
	> 10 IVII12	2.070 11113	-		
Magnitude error				2.3/6 11118	
Wagintude error	Span	EVM		FVM	
	<i>Span</i> ≤ 100 kHz	0.3% rms	· '		
	≤ 100 kHz ≤ 1 MHz	0.5% rms			
	≤ 10 MHz	1.0% rms	· ·		
	> 10 MHz	1.5% rms	· ·		
DI.	F 11.6			2.5% rms	
Phase error		ats with equal symbol amplitude		E1/A #	
	Span	EVM	· '		
	≤ 100 kHz	0.3° rms			
	≤ 1 MHz	0.4° rms	1 MHz	0.4° rms	
	≤ 10 MHz	0.6° rms	10 MHz	0.6° rms	
	> 10 MHz	1.2° rms	28 MHz	0.8° rms	
			36 MHz	1.2º rms	
			80 MHz	1.5° rms	
Frequency error	Symbol rate/500,000		Symbol rate/500,000		
	' '	accuracy if applicable)	(Relative to freque	ency standard)	
I-Q/origin offset	-60 dB		-60 dB		
Video modulation formats					
Residual EVM	≤ 1.5%		≤ 1.5%		
8, 16 VSB	SNR ≥ 36 dB, symbo	l rate = 10.762 MHz,	SNR ≥ 36 dB, sym	$NR \ge 36 \text{ dB}$, symbol rate = 10.762 MHz,	
	alpha = 0.115, IF or F	RF inputs, 7 MHz span,	alpha = 0.115, 7 MHz span,		
	full-scale signal, rang	ge ≥ –25 dBm,	full-scale signal, range ≥ -20 dBm,		
	result length = 800, a	averages = 10	result length = 800	0, averages = 10	
Residual EVM	≤ 1.0%		≤ 1.0%	-	
16, 32, 64, or 256 QAM:	SNR ≥ 40 dB, symbo	l rate = 6.9 MHz,		bol rate = 6.9 MHz,	
	· ·	inputs, 8 MHz span,	alpha = 0.15, 8 MH		
	full-scale signal, rang	•	•	•	
	result length = 800, averages = 10		full scale signal, range ≥ -20 dBm, result length = 800, averages = 10		

^{1.} For I+jQ analysis, user must compensate for I/Q delay of each channel.

For information on using calibration constants, please see topic "calibration constants" in Help text.

PSA spectrum analyzers, ESA spectrum analyzers, E4406A transmitter tester

	PSA (typical)		ESA (typical)		E4406A (typic	E4406A (typical)	
Accuracy	, ,,,		, , , ,		` ' '	,	
	and OQPSK; Cor signal, fully con measurement s < 3 GHz, randon range ≥ -24 dB ≥ 15% of span, a (0.3 to 0.7 for Or rate ≥ 1 kHz. Fo < 1 kHz, accuracy	pan, frequency in data sequence, im, start frequency alpha/BT ≥ 0.3 QPSK), and symbol r symbol rates cy may be limited Averaging = 10	Formats other than FSK, 8/16VSB, and 0QPSK; Conditions: Full scale signal, fully contained in the measurement span, frequency between 30 MHz and 3 GHz, random data sequence, range ≥ -20 dBm, start frequency ≥ 15% of span, alpha/BT ≥ 0.3 (0.3 to 0.7 for 0QPSK), and symbol rate ≥ 1 kHz. For symbol rates < 1 kHz, accuracy may be limited by phase noise. Averaging = 10		Formats other than FSK, 8/16VSB, and 00PSK; Conditions: Full scale signal, fully contained in the measurement span, random data sequence, range ≥ -18 dBm, start frequency $\geq 15\%$ of span, alpha/BT ≥ 0.3 (0.3 to 0.7 for 00PSK), and symbol rate ≥ 1 kHz. For symbol rates < 1 kHz, accuracy may be limited by phase noise. Averaging = 10		
Residual errors	Result = 150 symbols averages = 10		Result = 150 syr	nbols	Result = 150 sy averages = 10	ymbols	
Residual EVM							
	<i>Span</i> ≤ 100 kHz ≤ 1 MHz ≤ 8 MHz	EVM < 0.5% rms < 0.5% rms < 1.0% rms	<i>Span</i> ≤ 100 kHz ≤ 1 MHz ≤ 8 MHz	EVM < 1.2% rms < 0.4% rms < 1.8% rms	<i>Span</i> ≤ 100 kHz ≤ 1 MHz ≤ 8 MHz ¹	EVM < 0.5% rms < 0.5% rms < 1.0% rms	
Magnitude error	0 141112	11.070 11110		11.07011110	_ 0 101112	11.070 11110	
Ţ	Span ≤ 100 kHz ≤ 1 MHz	Error 0.5% rms 0.5% rms	<i>Span</i> ≤ 100 kHz ≤ 1 MHz	Error 0.6% rms 0.6% rms	Span ≤ 100 kHz ≤ 1 MHz	Error 0.3% (baseband) 0.5% rms (RF) 0.5% rms	
	≤8 MHz	1.0% rms	≤ 10 MHz	1.3% rms	≤ 8 MHz ¹	1.0% rms	
Phase error	For modulation		For modulation f		For modulation formats with		
	equal symbol ar	-	equal symbol an	-	equal symbol a		
F	Span ≤ 100 kHz ≤ 1 MHz ≤ 8 MHz	Error 0.3° rms 0.4° rms 0.6° rms	Span ≤ 100 kHz ≤ 1 MHz ≤ 10 MHz	Error < 0.7% rms < 0.5% rms < 0.8% rms	Span ≤ 100 kHz ≤ 1 MHz ≤ 8 MHz ¹	Error 0.3° rms 0.4° rms 0.6° rms	
Frequency error	Added to freque if applicable Symbol rate/50	, ,	Added to freque if applicable Symbol rate/500	, ,	Added to frequif applicable Symbol rate/50		
I-Q/origin offset	-60 dB or better	•	–57 dB or better		-60 dB or bette		
Video modulation formats	oo ab oi botto		07 42 01 201101		Applies for RF : I+jQ) modes or	and composite	
Residual EVM: 8/16 VSB	≤ 1.5% (SNR ≥ 3	·	≤ 1.7% (SNR ≥ 3	·	≤ 1.5% (SNR ≥		
	Symbol rate = 10.762 MHz, α = 0.115, frequency < 3 GHz, 7 MHz span, full-scale signal, range \geq -24 dBm, result length = 800, averages = 10		Symbol rate = 10.762 MHz, α = 0.115, frequency < 3 GHz, 8 MHz span, full-scale signal, range \geq -24 dBm, result length = 800, averages = 10		7 MHz span, fu	0.762 MHz, α = 0.115, II-scale signal, Improvement that the signal is the signal in the second se	
Residual EVM 16, 32, 64, or 256 QAM:	≤ 1.0% (SNR ≥ 4	40 dB)	≤ 1.5% (SNR ≥ 3	36 dB)	≤ 1.0% (SNR ≥	· 	
	2, 64, or 256 QAM: Symbol rate = 6.9 MHz, α = 0.15, frequency < 3 GHz, 8 MHz span, full-scale signal, range \geq -24 dBm, result length = 800, averages = 10		8 MHz span, ful	.9 MHz, α = 0.15, I-scale signal, n, result length = 800,	8 MHz span, fu	6.9 MHz, α = 0.15, Il-scale signal, m, result length = 800,	

^{1.} For RF only, \leq 5 MHz for baseband

3G modulation analysis (Option B7N)

89610S, 89611S, 89640S, 89641S, 89650S vector signal analyzers

	89610S/11S/40S/4	I1S (typical)	89650S (typical)
W-CDMA / HSDPA			
Signal playback			
Result length	1 to 64 slots		_
Capture length	Gap free analysis at 09	% overlap; 5 MHz span	Gap free analysis at 0% overlap; 5 MHz span
	144 MB memory	3,000 slots	> 15,000 slots
	288 MB memory	6,000 slots	
	1152 MB memory	24,000 slots	
Accuracy	Input range within 5 dl	B of total signal power	Input range within 5 dB of total signal power
Code domain			
CDP accuracy	±0.3 dB		±0.3 dB
	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
Symbol power versus time	±0.3 dB		±0.3 dB
, .	Spread channel power	within 20 dB of total	Spread channel power within 20 dB of total
	power averaged over a	ıslot	power averaged over a slot
Composite EVM			
EVM floor (pilot only)	≤ 1.5%		≤ 1.5%
EVM floor (test model 1			
with 16 DPCH signal)	≤ 1.5%		≤ 1.5%
Frequency error			
Lock range (CPICH synch type)	±500 Hz		≤ 500 Hz
Accuracy	±10 Hz		≤ 10 Hz
cdma2000 / 1xEV-DV			
Signal playback			
Result length	Forward link	Reverse link	_
5	1 to 64 PCGs	1 to 48 PCGs	
Capture length	Gap free analysis at 09	% overlap; 2.6 MHz span	Gap free analysis at 0% overlap; 2.6 MHz span
. 5	144 MB memory	3,200 PCGs	> 16,000 PCGs
	288 MB memory	6,400 PCGs	
	1152 MB memory	25,600 PCGs	
Accuracy	Input range within 5 dl	B of total signal power	Input range within 5 dB of total signal power Code domain
Code domain		<u> </u>	
CDP accuracy	±0.3 dB		±0.3 dB
,	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
Symbol power versus time	±0.3 dB	•	±0.3 dB
, ·	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
	averaged over a PCG	•	averaged over a PCG
Composite EVM			
EVM floor (pilot only)	≤ 1.5%		≤ 1.5%
EVM floor	≤ 1.5%		≤ 1.5%
	Test model 1 with 16 D	PCH signal	9 active channels
Frequency error			
Lock range	±500 Hz		≤ 500 Hz
- I			CPICH synch type
Accuracy	±10 Hz		≤ 10 Hz

89610S, 89611S, 89640S, 89641S, 89650S vector signal analyzers (continued)

	89610S/11S/40S/4	I1S (typical)	89650S (typical)
1xEV-D0			
Signal playback			
Result length	Forward link	Reverse link	_
	1 to 64 slots	1 to 64 slots	
Capture length	Gap free analysis at 09	overlap; 1.5 MHz span	Gap free analysis at 0% overlap; 1.5 MHz span
	144 MB memory	5,000 slots	> 20,000 slots
	288 MB memory	10,000 slots	
	1152 MB memory	40,000 slots	
Accuracy	Input range within 5 d	B of total signal power	Input range within 5 dB of total signal power
Code domain			
CDP accuracy	±0.3 dB		±0.3 dB
	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
Symbol power versus time	±0.3 dB	·	±0.3 dB
	Spread channel power within 20 dB of total power		Spread channel power within 20 dB of total power
Composite EVM		·	
EVM floor	≤ 1.5%		≤ 1.5%
Frequency error			
Lock range	± 500 Hz		≤ 500 Hz
Accuracy	± 5 Hz		≤ 5 Hz
TD-SCDMA			
Signal playback			
Result length	1 to 8 sub-frames		_
Capture length	Gap free analysis at 09	% overlap; 1.6 MHz span	Gap free analysis at 0% overlap; 1.6 MHz span
	144 MB memory	1,600 sub-frames	> 6.5 sub-frames
	288 MB memory	3200 sub-frames	
	1152 MB memory	12,800 sub-frames	
Accuracy	Input range within 5 d	B of total signal power	Input range within 5 dB of total signal power
Code domain			
CDP accuracy	±0.3 dB		±0.3 dB
	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
Symbol power versus time	±0.3 dB	•	±0.3 dB
	Spread channel power	within 20 dB of total power	Spread channel power within 20 dB of total power
Composite EVM	·	·	
EVM floor	≤ 1.5%		≤ 1.5%
Frequency error			
Lock range	± 500 Hz		≤ 500 Hz
Accuracy	± 25 Hz		≤ 25 Hz

PSA spectrum analyzers, ESA spectrum analyzers, E4406A transmitter tester

	PSA (typical)	ESA (typical)	E4406A (typical)
W-CDMA / HSDPA			
Signal playback			
Result length	1 to 64 slots	1 to 27 slots ¹	1 to 64 slots ²
Capture length	Gap free analysis at	Gap free analysis at	Gap free analysis at
	0% overlap; 5 MHz span	0% overlap; 5 MHz span	0% overlap; 5 MHz span
	88 slots	27 slots ¹	88 slots ²
Accuracy (typical)	Input range ≥ -24 dBm, within	Input range within 5 dB	Input range within 5 dB
	5 dB of total signal power,	of total signal power	of total signal power
	frequency < 3 GHz		
Code domain			
CDP accuracy	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power
Symbol power versus time	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power averaged	20 dB of total power averaged	20 dB of total power averaged
	over a slot	over a slot	over a slot
Composite EVM			
EVM floor	≤ 1.5%	≤ 1.6%	≤ 1.5%
	Pilot only		Pilot only
EVM floor	≤ 1.5%	≤ 1.6%	≤ 1.5%
	Test model 1 with 16 DPCH signal		Test model 1 with 16 DPCH signal
Frequency error			
Range (CPICH sync type)	±500 Hz	±500 Hz	±500 Hz
Accuracy	±10 Hz	±10 Hz	±10 Hz

^{1.} Alias protect = false; 11 slots when alias protect = true

^{2. 43} slots maximum for channel 1, baseband mode

PSA spectrum analyzers, ESA spectrum analyzers, E4406A transmitter tester (continued)

	PSA (typical)	ESA (typical)	E4406A (typical)
cdma2000 / 1xEV-DV			
Signal playback			
Result length	Forward link	Forward link	Forward link, RF
	1 to 64 PCG	1 to 64 PCGs ¹	1 to 64 PCG
	Reverse link	Reverse link	Reverse link, RF
	1 to 48 PCG	1 to 4 PCGs ¹	1 to 48 PCG
			1 channel, baseband
			1 to 22 PCG
			2 channels, baseband
			1 to 46 PCG
Capture length	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;
3.	1.5 MHz span	1.5 MHz span	1.5 MHz span ¹
	94 PCG	24 PCG ¹	RF
			94 PCG
			1 channel, baseband
			22 PCG
			2 channels, baseband
			46 PCG
Accuracy	Input range ≥ –24 dBm,	Input range within 5 dB	Input range within 5 dB
,	within 5 dB of total signal power,	of total signal power	of total signal power
	frequency < 3 GHz	or total orginal portor	or total olginal portor
Code domain			
CDP accuracy	±0.3 dB	±0.3 dB	±0.3 dB
•	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power
Symbol power versus time	±0.3 dB	±0.3 dB	±0.3 dB
, .	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power averaged	20 dB of total power averaged	20 dB of total power averaged
	over a slot	over a slot	over a slot
Composite EVM			
EVM floor	≤ 1.5%	≤ 1.6%	≤ 1.5%
	Pilot only		Pilot only
EVM floor	≤ 1.5%		≤ 1.5%
	Test model 1 with 16 DPCH signal		Test model 1 with 16 DPCH signal
Frequency error	<u> </u>		
Lock range	± 500 Hz	± 500 Hz	± 500 Hz
(CPICH sync type)			
Accuracy	± 10 Hz	± 10 Hz	± 10 Hz

^{1.} For alias protect = false, 5 PCGs with alias protect = true

PSA spectrum analyzers, ESA spectrum analyzers, E4406A transmitter tester (continued)

	PSA (typical)	ESA (typical)	E4406A (typical)
1xEVD0			
Signal playback			
Result length	Forward link	Forward link	Forward link
	1 to 64 slots	1 to 18 slots ¹	1 to 64 slots
	Reverse link	Reverse link	Reverse link
	1 to 64 slots	1 to 18 slots ¹	1 to 64 slots
Capture length	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;
	1.5 MHz span	1.5 MHz span	1.5 MHz span
	65 slots	18 slots ¹	70 slots
Accuracy	Input range ≥ -24 dBm, within	Input range within 5 dB	Input range within 5 dB
	5 dB of total signal power	of total signal power	of total signal power
Code domain			
CDP accuracy	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power)
Symbol power versus time	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power
Composite EVM			
EVM floor	≤ 1.5%	≤ 1.6%	≤ 1.5%
Frequency error			
		± 500 Hz	± 500 Hz
Accuracy	± 5 Hz	± 10 Hz	± 5 Hz
TD-SCDMA		Alias protect = false	
Signal playback			
Result length	1 to 8 sub-frames	1 to 5 sub-frames ²	1 to 8 sub-frames
Capture length	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;	Gap free analysis at 0% overlap;
	1.6 MHz span	1.6 MHz span	1.6 MHz span
	10 sub-frames	5 sub-frames ²	10 sub-frames
Accuracy	10 MHz to 3 GHz, input range	Input range within 5 dB	Input range within 5 dB
	\geq -24 dBm and within 5 dB	of total signal power	of total signal power
	of total signal power		
Code domain			
CDP accuracy	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power
Symbol power versus time	±0.3 dB	±0.3 dB	±0.3 dB
	Spread channel power within	Spread channel power within	Spread channel power within
	20 dB of total power	20 dB of total power	20 dB of total power
Composite EVM			
EVM floor	≤ 1.5%	≤ 1.5%	≤ 1.5%
Frequency error			
Lock range	± 500 Hz	± 500 Hz	± 500 Hz
Accuracy	± 10 Hz	± 25 Hz	± 25 Hz

^{1.} For alias protect = false, 3 slots for alias protect = true

^{2.} Requires frequency span \leq 2.5 MHz, sub-frame start boundary. Drops to 2 sub-frames for two frame start boundary.

WLAN modulation analysis (Option B7R)

89610S, 89611S, 89640S, 89641S, 89650S vector signal analyzers

	89610S/11S/40S/41S (typical)	89650S (typical)
802.11a/g OFDM		
Signal playback		
Result length	Auto detect or adjustable from 1 to 1367 symbol times	-
Capture length	Gap free analysis at 0% overlap; 31.25 MHz span	Gap free analysis at 0% overlap; 31.25 MHz span
	144 MB memory 1.0 s	3.3 s
	288 MB memory 2.0 s	
	1152 MB memory 8.0 s	
Accuracy	20 averages	20 averages
Residual EVM		
Equalizer training =	≤ –45 dB	≤-47 dB
chan est. seq. and data		
Equalizer training =	≤ –43 dB	≤ –45 dB
chan est. seq.		
Frequency error		
Carrier spacing	312 kHz	312 kHz
	1.4 MHz max, user settable	1.4 MHz max, user settable
Lock range	±624 kHz	±624 kHz
	±2 x sub-carrier spacing	±2 x sub-carrier spacing
Frequency accuracy	±8 Hz	±8 Hz
802.11a/g DSSS		Pre-selector bypass enabled above 3 GHz,
		requires Option E4440A-123
Signal playback		
Result length	Auto detect or adjustable from	
	1 to 275,000 chips (25 ms)	
Capture length	Gap free analysis at 0% overlap; 34.375 MHz span	Gap free analysis at 0% overlap; 34.375 MHz span
	144 MB memory 1.0 s	3.0s
	288 MB memory 2.0 s	
	1152 MB memory 8.0 s	
Accuracy	Input range within 5 dB of total signal power	Total power within 2 dB of full scale
Residual EVM	≤ 2%	≤ 1.0%
	All modulation formats, 10 averages	≤ 0.5% with equalizer enabled;
		All modulation formats, 10 averages,
		reference filter = transmit filter
Frequency error		Relative to frequency standard
Lock range	± 2.5 MHz	± 2.5 MHz
Frequency accuracy	± 8 Hz	± 8 Hz

802.16-2004 OFDM modulation analysis (Option B7S)

89610S, 89611S, 89640S, 89641S, 89650S vector signal analyzers

	89610S/11S/40S/41S (typical)		89650S (typical)				
Center frequency range							
Signal playback							
Result length	Auto detect	or adjustable	from 1 to 1745	symbol times	Auto detect or adjustable from 1 to 1394 symbol times		
Capture length	Gap free an	alysis at 0% o	overlap		Gap free ar	Gap free analysis at 0% overlap	
	Span	Memory	Max lengti	h	Span	Memory	Max length
	12.5 MHz	144 MB	2 s		12.5 MHz	512 MB	2.9 s
		288 MB	4 s				
		1152 MB	16 s				
	36 MHz	144 MB	1 s		36 MHz	512 MB	4.1 s
		288 MB	2 s				
		1152 MB	8 s				
Accuracy			•				
Residual EVM	20 averages; input range within 5 dB of full scale		20 averages; input range within 2 dB of full scale				
Equalizer training =							
chan est. seq. and data	Signal band	width	EVM (REF)	EVM (IF/BB)	Signal band	lwidth	EVM
	20 MHz		\leq $-43~dB$	≤-45 dB	20 MHz		≤ –48 dB
	7 MHz		≤-46 dB	≤-49 dB	7 MHz		≤-49 dB
Equalizer training =							
chan est. seq. only	Signal band	width	EVM (REF)	EVM (IF/BB)	Signal band	lwidth	EVM
	20 MHz		≤ –42 dB	≤-44 dB	20 MHz		≤-46 dB
	7 MHz		≤-44 dB	≤-48 dB	7 MHz		≤-47 dB
Frequency error							•
Lock range	Signal band	width	Range		Signal band	lwidth	Range
-	20 MHz		±135 kHz		20 MHz		±135 kHz
	7 MHz		±47.25 kHz		7 MHz		±47.25 kHz
Frequency accuracy	±10 Hz				±10 Hz		•

PSA and **ESA** spectrum analyzers

	PSA (typical)		ESA (typical)	
Center frequency range	, , , ,			
Signal playback				
Result length	Auto detect or adjust	able from	Auto detect or adjusta	able from
	1 to 1394 symbol time	es	1 to 800 symbol times	
Capture length	Gap free analysis at 0)% overlap; 8 MHz span	Gap free analysis at 0	% overlap; 10 MHz span
	59 ms		8 ms	
Accuracy				
Residual EVM	20 averages; input ra	nge within 5 dB of full scale	20 averages; input ran	ge within 5 dB of full scale
Equalizer training =				
chan est. seq. and data	Signal bandwidth	EVM	Signal bandwidth	EVM
	7 MHz	≤-49 dB	10 MHz	≤-39 dB
			7 MHz	≤-40 dB
Equalizer training =				
chan est. seq. only	Signal bandwidth	EVM	Signal bandwidth	EVM
	7 MHz	≤-47 dB	10 MHz	≤ –38 dB
			7 MHz	≤-39 dB
Frequency error		·		
Lock range	Signal bandwidth	Range	Signal bandwidth	Range
	7 MHz	±33.75 kHz	7 MHz	±47.25 kHz
			10 MHz	±67.5 kHz
Frequency accuracy	±10 Hz		±10 Hz	

General

89610S, 89611S, 89640S, 89641S

	89610S/11S/40S/41S
Hardware interfaces (characteristic)	
External trigger input	BNC, 1 kΩ impedance
External frequency reference	
Output 10 MHz	> 3 dBm
Input	10MHz or 13 MHz (±5 ppm), > 0 dBm
Safety and regulatory compliance	
Safety standards	EN 61010-1 (1993)
Radiated emissions	EN 61326-1
Immunity ^{1, 2}	EN 61326-1
Environmental	
Operating temperature range	
Warranted operation	20° to 30 °C
Maximum operation	0° to 50 °C
Storage	–40° to 70 °C
Humidity	10 to 90% at 40 °C
Maximum altitude	3,000 m
Warm up time	30 minutes
Calibration interval	2 year
Power requirements	
47 to 440 Hz operation	90 to 140 Vrms
47 to 66 Hz operation	90 to 264 Vrms
Maximum power dissipation	Mainframe maximum rating
E8408A 4-slot VXI mainframe	280 VA
E8403A 13-slot VXI mainframe	1500 VA
E1421B 6-slot VXI mainframe	450 W
Physical	Using E8408A 4-slot VXI mainframe
Weight	13 kg (29 lb) ³
Dimensions (H x W x D mm)	
With protective bumpers	388 x 152 x 548
Without protective bumpers	362 x 133 x 540

^{3. 40} kg (87 lb) E8403A 13-slot mainframe with 2 RF channels

Appendix A: User-Supplied PC Requirements

Any laptop or desktop PC may be used to run the 89600 VSA software, as long as it meets or exceeds the following minimum requirements:

- > 300 MHz Pentium® or AMD-K6 processor
- 192 MB RAM (256 MB recommended)
- 4 MB video RAM (8 MB recommended)
- Hard disk with 170 MB of available space
- Microsoft Windows 2000® SP2 or XP Professional® (laptop or desktop) operating system
- CD-ROM drive to load the software (can be provided via network access), 3.5-inch floppy disk drive (can be provided via network access)
- LAN, GPIB or FireWire interface. (Hardware platform dependent, see Appendix B)

Appendix B: Software and Hardware Feature Availability and Requirements

89600 Series VSA software requirements 89601A VSA software

89650S platform

E4448A opt B7J

896505

The 89601A vector signal analysis software requires Option 200, "Basic Vector Analysis," and Option 300, "Hardware Connectivity," to work with any hardware platform. The software version required to work with a specific platform is shown in the following tables:

89600S VXI platforms	89601A version
89610S	V1.00 or later
89611S	V1.00 or later
89640S	V1.00 or later
89641S	V1.00 or later

89601A version

V5 21 or later

V4.00 or later

٠	030303	V3.21 Of later
	PSA platforms	89601A version
	E4440A opt B7J	V3.00 or later
	E4440A opt 122	V5.21 or later
	E4443A opt B7J	V3.00 or later
	E4445A opt B7J	V3.00 or later
ĺ	E4446A opt B7J	V4.00 or later

89601A version
V3.01 or later

E4406A platform	89601A version
E4406A	V3.00 or later

89601AN/89601N12 VSA software

The 89601AN VSA software offers the same functions and features as the 89601A software; however its license resides on a network server (i.e. floating license) rather than in the PC. This allows one license to be shared between copies of the software being used by different users throughout an organization.

The 89601N12 VSA software also uses a floating license, but this license is valid for one year only.

The 89601AN vector signal analysis software requires Option 200, "Basic Vector Analysis," and Option 300, "Hardware Connectivity," to work with any hardware platform. The 89601N12 software comes standard with these options. The required version of the software is shown in the hardware specific tables:

Models	89601AN, 89601N12 version
89600S (all models)	V5.00 or later
89650S	V5.21 or later
PSA (all models)	V5.00 or later
PSA (all models with opt 122)	V5.21 or later
ESA (all models)	V5.00 or later

89600S VXI platforms Configuration requirements

The 89600S VXI platforms (89610S, 89611S, 89640S, 89641S) are factory integrated systems and come standard with the 89600 VSA software, the VXI mainframe, and the VXI modules required to make measurements.

VXI requirements

The minimum hardware required is supplied standard as part of the factory integration process.

Software requirements

See the "89600S VXI platforms" table entry under "89600 Series VSA software requirements" at the beginning of Appendix B.

PC requirements

See Appendix A "User-supplied PC requirements."

PC to VXI interface

The connection to the PC is via IEEE-1394 FireWire. See www.agilent.com/find/iolib for approved laptop FireWire I/O cards.

Feature availability

All software and hardware features are available, including the 89600 scalar spectrum application.

89650S platform

Configuration requirements

The 89650S combination comes standard with a PSA Series spectrum analyzer and the 89600 VSA software (each with all required options), and interface cables.

PSA requirements

The 89650S requires the E4440A PSA Series spectrum analyzer with option E4440A-122, 80 MHz bandwidth ADC.

Software requirements

See the "89650S platform" table entry under "89600 Series VSA software requirements" at the beginning of Appendix B.

PC requirements

See Appendix A "User-supplied PC requirements."

PC to PSA interface

The PSA supports LAN I/O. Using a LAN cross-over cable is recommended (available from Agilent, part number 8120-0545) for the connection.

Feature availability

When the PSA is controlled by 89600 software, users have control of the following features of the spectrum analyzer using the software:

Frequency: The center frequency will be displayed on the 89600 software GUI

Span: ≤ 80 MHz

Input attenuator, preamp, and ADC gain: available indirectly through the input range feature of the 89600 coftware.

Triggering: IF magnitude, external front/rear, hold-off, level, delay and slope

External reference: Selectable frequency (1 to 30 MHz)

Calibration

Overload detection

In addition, you can gain immediate, direct access to all of the spectrum analyzer's features by using the disconnect capability on the VSA software's control menu.

The 89600 software's scalar spectrum application is not supported.

PSA platforms

Configuration requirements

The PSA/89600 software combination requires a PSA Series spectrum analyzer and the 89600 vector signal analysis software (each with required options), a PC to run the software, and interface cables. The following are the detailed configuration requirements for each.

PSA requirements

The PSA/89600 software combination requires a PSA Series spectrum analyzer (model E4440A, E4443A, E4445A, E4446A, or E4448A) with Option E44xx-B7J, the digital demodulation hardware, to interface with the 89600 software.

Option 122, 80 MHz bandwidth ADC, may be used in place of Option B7J on the E4440A (see 89650S for performance specifications). This option is required for operation with Option B7R, WLAN modulation analysis.

Firmware version A.04 or later is required in the PSA analyzer.

Software requirements

See the "PSA platforms" table entry under "89600 Series VSA software requirements" at the beginning of Appendix B.

PC requirements

See Appendix A "User-supplied PC requirements."

PC to PSA interface

The PSA supports LAN I/O. Using a LAN cross-over cable is recommended (available from Agilent, part number 8120-0545) for the connection.

Feature availability

When the PSA is controlled by 89600 software, users have control of the following features of the spectrum analyzer using the software:

Frequency: The center frequency will be displayed on the 89600 VSA software GUI

Span: Only zero-span is available. Maximum setting is ≤ 8 MHz (≤ 80 MHz with Option 122, E4440A only). Zero span control and the display of its current setting are provided by the 89600 software.

Input attenuator, preamp, and ADC gain: Available indirectly through the input range feature of the 89600 software

Triggering: IF magnitude, external front/rear, hold-off, level, delay and slope

External reference: Selectable frequency (1 to 30 MHz) Calibration

Overload detection

In addition, you can gain immediate, direct access to all of the PSA Series spectrum analyzer's features by using the disconnect capability on the VSA software's control menu.

The $89600\ \text{VSA}$ software's scalar spectrum application is not supported.

ESA platforms

Configuration requirements

The ESA/89600 software combination requires an ESA-E Series spectrum analyzer and the 89600 vector signal analysis software (each with required options), a PC to run the software, and interface cables.

When ordering a new ESA-E Series spectrum analyzer

The ESA-E/89600 software combination works with any new ESA-E Series model E4402B, E4404B, E4405B, or E4407B with firmware version A.08.04 or higher.

One of the following option sets must be installed in the ESA-E.

Option	Description
COM	Communications test analyzer
A4H	GPIB and Centronic interfaces (default)

or:

Option	Description
B7D	Digital signal processing and fast ADC
B7E	RF communication hardware (ID117 or higher required for IF magnitude triggering)
1D5	High stability frequency reference
A4H	GPIB and Centronic interfaces
229*	Modulation analysis personality (version A.02.01 or higher)
231*	89600 VSA link personality (version A.02.00 or higher)

^{*} Ordering at least one option is required.

Using an existing ESA-E Series spectrum analyzer

The following options are needed in an existing ESA-E Series spectrum analyzer for it to work with the 89600 software:

Option	Description	
B7D	Digital signal processing and fast ADC	
B7E	RF communication hardware ID 117 or higher required	
	for IF magnitude triggering	
1D5	High stability frequency reference	
A4H	GPIB and Centronic interfaces	
B72	Increase memory to 16 MB	
229*	Modulation analysis personality	
	(version A.02.01 or higher)	
231*	89600 VSA link personality (version A.02.00 or higher)	

^{*} Ordering at least one option is required.

To find whether these options are in your ESA-E Series spectrum analyzer, press the following buttons on the front panel of the analyzer: [System] > [More] > [Show System].

Software requirements

See the "ESA platforms" table entry under "89600 Series VSA software requirements" at the beginning of Appendix B. Option B7R WLAN modulation analysis is not recommended, as WLAN signals require more analysis bandwidth than the ESA spectrum analyzers provide.

PC requirements

See Appendix A "User-supplied PC requirements."

PC to ESA interface

The ESA-E Series spectrum analyzers with Option E44xxA-A4H support GPIB I/O. The following interface cards and cables are recommended for connecting the ESA-E to a PC via GPIB.

Description	Part number	Notes
PCMCIA	778034-02	For laptop PCs; comes with
		a two-meter GPIB card GPIB
		cable. Available from
		National Instruments.
PCI GPIB	82350	For desktop PCs; requires
interface card		GPIB cable (10833A).
		Available from Agilent.
One-meter	10833A	Available from Agilent.
GPIB cable		_
USB/GPIB	82357A	Available from Agilent.

LAN connection is available using the Agilent E2050A LAN/GPIB Gateway.

Feature availability

When the ESA-E is controlled by 89600 software, users have control of the following features via the 89600 software:

Frequency: The center frequency of the ESA-E is controlled and the 89600 software displays its current setting.

Span: Only zero-span is available. Maximum setting is 10 MHz. Zero span control and the display of its current setting are provided by the 89600 software.

Input attenuation: Available through input range feature of 89600 software.

Triggering: IF magnitude, external TTL, level, delay, and slope.

External reference: 10 MHz or 1 to 30 MHz.

Calibration

Overload detection

In addition, you can gain immediate, direct access to all of the ESA series spectrum analyzer's features by using the disconnect capability on the VSA software's control menu.

The 89600 VSA software's scalar spectrum application is not supported.

E4406A platform

Configuration requirements

The E4406A/89600 software combination requires an E4406A transmitter tester and the 89600 vector signal analysis software (each with required options), a PC to run the software, and interface cable.

E4406A requirements

The E4406A/89600 software combination requires an E4406A with version A.05.32, or later, firmware. Option E4406A-B7C, "I/Q inputs," is required for baseband measurements.

Software requirements

See the "E4406A platform" table under "89600 Series VSA software requirements" at the beginning of Appendix B.

PC requirements

See Appendix A "User-supplied PC requirements."

PC to E4406A interface

The E4406A supports both LAN and GPIB I/O. The table shows the interface cards and connection cables that are recommended for the PC.

Description	Part number	Notes
PCMCIA	778034-02	For laptop PCs, comes with
		a two-meter GPIB card GPIB cable. Available from
		National Instruments.
PCI GPIB	82350	For desktop PCs, requires
interface card	02000	GPIB cable (10833A).
		Available from Agilent.
One-meter	10833A	Available from Agilent.
GPIB cable		
USB/GPIB	82357A	Available from Agilent.

A cross-over LAN cable (available from Agilent, part number 8120-0545) is recommended for the LAN connection.

Feature availability

When the E4406A is controlled by 89600 software, users have control of the following features via the 89600 software:

Frequency: The center frequency will be displayed on the 89600 software GUI

Span: Only zero-span is available. Maximum setting is 8 MHz. Zero span control and the display of its current setting are provided by the 89600 software.

Input attenuator and ADC gain: Available indirectly through the input range feature of the 89600 software **Triggering:** IF magnitude, external front/rear, hold-off, level, delay, and slope

External reference: Selectable frequency

Calibration

Overload detection

Baseband operation (with Option B7C installed): Ch1 + jCh2 mode supported via 89600 VSA software.

In addition, you can gain immediate, direct access to all of the E4406A transmitter tester's features by using the disconnect capability on the VSA software's control menu.

The 89600 VSA software's swept spectrum application is not supported.

Glossary

dBc dB relative to largest input signal

dBfs dB relative to full-scale amplitude range

setting, where full scale is approximately

10 dB below ADC overload

Fc or fc Center frequency; typically the center of a

spectrum trace. This parameter is set in the

"Frequency" menu.

FS or fs Full scale; synonymous with amplitude range

or input range

ppb Parts per billion RBW Resolution bandwidth

Glossary

89600 Series Vector Signal Analysis Software 89601A/89601AN/89601N12, Technical Overview, literature number 5988-1679EN

89600S Vector Signal Analyzer, CD, literature number 5980-1989E

89600 Series Vector Signal Analysis Software 89601A/89601AN/89601N12, Data Sheet, literature number 5989-1786EN

89600 Series Vector Signal Analyzers, VXI Configuration Guide, literature number 5968-9350E

89650S Wideband Vector Signal Analyzer System with High Performance Spectrum Analysis, Technical Overview, literature number 5989-0871EN

89650S Bandwidth Vector Signal Analyzer System with High Performance Spectrum Analysis, Configuration Guide, literature number 5989-1435EN

 $89607A\ WLAN\ Test\ Suite\ Software,\ Technical\ Overview,$ literature number $5988\text{-}9574\mathrm{EN}$

89604A Distortion Test Suite Software, Version 4.0, Technical Overview, literature number 5988-7812EN

Related Web Resources

For more information, visit: www.agilent.com/find/89600

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States: Korea: (tel) (080) 769 0800 (tel) 800 829 4444 (fax) 800 829 4433 (fax) (080)769 0900 Latin America: Canada: (tel) 877 894 4414 (tel) (305) 269 7500 (fax) 800 746 4866 Taiwan: (tel) 0800 047 866 China: (tel) 800 810 0189 (fax) 0800 286 331 (fax) 800 820 2816 Other Asia Pacific Countries: Europe: (tel) (65) 6375 8100 (tel) 31 20 547 2111 (fax) (65) 6755 0042 Email: tm_ap@agilent.com Japan: (tel) (81) 426 56 7832

Product specifications and descriptions in this document subject to change without notice

© Agilent Technologies, Inc. 2004 Printed in USA, December 6, 2004 5989-1753EN

(fax) (81) 426 56 7840

